Prof. Ren-Song Tsay November 10, 2018

EECS 204002

Data Structures & 1 4518

Prof. REN-SONG TSAY 31{_#3 ##%
NTHU

CH. 10 EFFICIENT
BINARY SEARCH TREES

Binary Search Trees ‘

« All BST operations complexity = 0 (h)
° h = height of the BST
* Worst case:h = n

° Ex:insert keys 1,2, ...,n N
N

* Best case: h = logn [)
> Ex:insert keys 4,2,6,1,3,5,7

What is the Best Case?

¢ If BST retains a complete tree

* But expensive to retain a complete tree
> Ex:insert 3 into the tree on the left

Complete tree

Prof. Ren-Song Tsay November 10, 2018

A Compromise |

¢ Fairly, but not perfectly, balanced tree
> Depths of the left and right subtrees = +1
* Which one is “balanced”?

o

How to Keep a Balanced BST ?

* AVL Trees
¢ Red-black Trees (self-study)
« Splay trees (self-study)

> Self adjusting trees

o B-trees

> Multiway search trees

10.2

AVL Trees

Prof. Ren-Song Tsay

102 Height Balanced Trees

November 10, 2018

* An empty tree is height balanced.

e If T is a non-empty binary tree with T, and Ty
o As its left and right subtrees respectively
« Balance factor
bf(T) = height(T;) — height(Tg)
o T is height balanced iff

I) Ty and Ty are height balanced.
2) Ibf(MDl <1

10.2

Definition of AVL Trees

e AVL tree is a height-balanced binary
search tree. (Adelson, Velskii, Landis)
¢ Each node in an AVL tree stores the

current node height for calculating the
balance factor 2

Balance factor

Key
<Height>)

Representation An unbalanced BST An AVL Tree

10.2

Prove N > 21/2

for an N-node AVL tree of height h
¢ |dea: to prove by showing N > N(h) > 2h/2)
where N(h) = minimum # of nodes of an
h—height AVL tree.
¢ Induction
N1 =1,N2)=2
“N(h)=N(h—1) + N(h—2) + 1
“ N(h)=2-N(h—2)
 Solution
N(h) = 2N(h — 2) = 2(2N(h — 4))
> 2iN(h — 2i) = 21?2
¢ Or h = 0(log,N)

Prof. Ren-Song Tsay November 10, 2018

102 Rebalancing Process

» BST insertion/deletion operation may cause
nodes with balance factor > 1 or <-1.

» Rebalancing process

> Update the heights (balance factors) from the
inserted/deleted node up to the root.

Fix unbalanced situations by rotations.

Rebalancing Operations ‘

Need two rotations

Right rotation on selected area
Then, left rotation

conflict

Rebalancing Operations ‘

Need two rotations

Left rotation on selected area

Then, right rotation

Prof. Ren-Song Tsay

10.2

4 Unbalanced Situations

* 2 outside cases: require single rotation
(LL, RR)

« 2 inside cases: require double rotation
(LR, RL)

OWVAVY NS O OWAVY O

2 outside cases 2 inside cases

November 10, 2018

Outside RR Case - Left Rotation

* The new node is inserted in the right subtree of the
right subtree of A

Q Left Rotation e
N
/n\ ’G - 0
SN Lo

S

Outside LL Case - Right Rotation

* The new node is inserted in the left subtree of the left
subtree of A

(a) Right Rotation (8)
STA =

AL A& A

Prof. Ren-Song Tsay

Inside RL Case - LR Rotation

November 10, 2018

* The new node is inserted in the right subtree of the left

subtree of A
¢ Left rotation + Right rotation

® (™ <)
& A °1Ao o
/n\ | (©) (8) /n\ AVANVAVY
/o\ /o /o\ /o

Inside LR Case - RL Rotation

¢ The new node is inserted in the left subtree of the right

subtree of A
¢ Right rotation + left rotation

By 0
SAAE 4@ @
IANVANAVAVAVL

10.2

ADT: AVL Tree

template < class T > class AVLTree;

template < class T >
Class TreeNode {
friend class AVLTree <T>;
private:

T data;

int height;

void updateHeight();

int b£{();

TreeNode<T>* left, right;
+i

template <class T>
Class AVLTree{
public:
// Constructor
AVLTree (void) {root=NULL;}

// Tree operations here

private:
TreeNode<T> *root;
}i

Prof. Ren-Song Tsay

10.2

AVL Tree Insert/Delete

November 10, 2018

template < class T >

TreeNode<T>* AVLTree<T>::insert(TreeNode<T> *node, T data)

{
// BST Insert
/"o

// rebalance from node to root
node->updateHeight () ;
return rebalance(node);

}

template < class T >
TreeNode<T>* AVLTree<T>::delete(TreeNode<T> *node, T data)
{

// BST Delete
/"o
// rebalance from node to root

node->updateHeight () ;
return rebalance(nede);

10.2

AVL Tree Rebalance

template < class T >
TreeNode<T>* AVLTree<T>::rebalance (TreeNode<T> *node){
1/ LL Case
if (node->bf()>1 && node->left->bf()>=0){
return rightRotate(node);
3
/ RR Case
if (node->bf()<-1 && node->right->bf()<=0){
return leftRotate(ncde)
}
// RL Case
if (node->bf()>1 && node->left->bf()<0){
node->left = leftRotate(node->left);
return rightRotate(node);

LR Case
if (node->bf()<-1 && node->right->bf()>0){
node->right = rightRotate(node->right);
return leftRotate(node);

10.2

AVL Tree Left/Right Rotation

template < class T >
TreeNode<TI>* AVLTree<T>::leftRotate (TreeNode<T> *node)
{

TreeNode<T>* node r = node->right;
TreeNode<T>* node_rl = node_r->left;
node_r->left = node;

node—>right = node rl;

node->UpdateHeight () ;

node r->UpdateHeight() ;

return node r; ' TR
e '

3

template < class T >
TreeNode<T>* AVLTree<T>::rightRotate (IreeNode<T> *node)
{

TreeNode<T>* node 1 = node->left;
TreeNode<T>* node lr = node_l->right;
node l->right = node;

node—>left = node lr;
node->UpdateHeight () ;
node_l->UpdateHeight() ;

return node 1;

Prof. Ren-Song Tsay

10.2

AVL Tree: Example: Insert 17

November 10, 2018

o\ LL Case Rebalancing

@ i‘z.b 2 Right rotation!
j @ 1

0 Update height and bf

10.2

AVL Tree: Example: Insert 17

Finish checking

10.2

AVL Tree: Example: Insert 5

RL Case Rebalancing
LR rotations!

Prof. Ren-Song Tsay

10.2

AVL Tree: Example: Insert 5

November 10, 2018

After left rotation

continue

rebalancing,

right rotation! '
s

10.2

AVL Tree: Example: Insert 5

Finish checking

10.2

AVL Tree: Example: Delete 16

14 replaces 16
Delete 14!

Prof. Ren-Song Tsay

10.2

AVL Tree: Example: Delete 16

RR Case Rebalancing
Left rotation!

November 10, 2018

10.2

AVL Tree: Example: Delete 16

Q"
(5 &
@@ @ @
Gy

EECS 204002
Data Structures & 4518

Prof. REN-SONG TSAY £1{_# &
NTHU

CH. I | MULTIWAY
SEARCH TREES

10

Prof. Ren-Song Tsay

November 10, 2018

B-tree: Definition

A B-tree of order m is a height-balanced m-way

search tree, where each node may have up to m

children, and in which:

I. Each internal node contains no more than m-1
keys

2. All leaves are on the same level

3. All nodes except the root have [m/2] to m
children

4. The root is either a leaf node, or it has 2 to m
children

ey [key
m usually is odd. / I \
pointer

“n

2-3 Trees

o A B-Tree of order 3 is called a 2-3 Tree.
° 2 to 3 pointers

¢ In a 2-3 tree, each internal node has
either 2 or 3 children.

¢ Most practical applications adopt larger
order (e.g, m = 128) B-Trees.

/7L

11

Prof. Ren-Song Tsay

Example of a 2-3 Tree

ol rorm
'y

l

m=3
of Children: 2~3

November 10, 2018

B-tree: Insert

e
—

 Search
¢ Insert the new key into a leaf,
which is the node under work
« If the node overflows
If it is root, create a new root as
its parent
L o Split the node into two and push

up the middle key to the node’s
—l parent
Let the parent node be the node

m under work and repeat the
Check parent overflow checking and split
process.
* Done, if no overflow.

Insert into leaf

Example of a 2-3 Tree

ol oy
'y

After 70 Inserted

(80
ll

12

Prof. Ren-Song Tsay

Example of a 2-3 Tree

)

[TT1T]

November 10, 2018

Example of a 2-3 Tree

[7 1

[Tl

|F|ow Chart of B-tree Deletion |

@

Delete

Check parent
Case 2 Case 3

Case 4

Swap with the

YES Ioglc next key
Case 1
r an redistribute
Redlstrlbute

13

Prof. Ren-Song Tsay

Deletion from a 2-3 Tree

ol ot S
TRy

Delete 70?

November 10, 2018

Deletion from a 2-3 Tree ‘

After 70 deleted

Case 1l

Y

/

[T T

Deletion from a 2-3 Tree ‘

After 10 deleted

Delete 607

14

Prof. Ren-Song Tsay

Deletion from a 2-3 Tree ‘

After 60 deleted

Delete 95?

November 10, 2018

Deletion from a 2-3 Tree

After 95 deleted

"
TRy

Delete 507

Deletion from a 2-3 Tree

After 50 deleted

e

[T

Delete 20?

15

Prof. Ren-Song Tsay November 10, 2018

Deletion from a 2-3 Tree

[T]

After 20 deleted

B-Tree Exercise

Insert the following keys to a 5-way B-tree:

3,7,9,23,45,1,5, 14,25,24,13, 11,8, 19,4,
31,35,56

Then delete all nodes subsequently in the
reverse order of the insertion.

16

