

How to Keep a Balanced BST? AVL Trees Red-black Trees (self-study) Splay trees (self-study) Self adjusting trees B-trees Multiway search trees

10.2

Height Balanced Trees

- · An empty tree is height balanced.
- If T is a non-empty binary tree with T_L and T_R
 - · As its left and right subtrees respectively
- Balance factor

$$bf(\pmb{T}) = height(\pmb{T}_{\pmb{L}}) - height(\pmb{T}_{\pmb{R}})$$

- T is height balanced iff
 - I) T_L and T_R are height balanced.
 - 2) $|bf(T)| \le 1$

10.2

Definition of AVL Trees

- AVL tree is a height-balanced binary search tree. (Adelson, Velskii, Landis)
- Each node in an AVL tree stores the current node height for calculating the balance factor

Balance factor Key Height Representation

10.2

Prove $N \ge 2^{h/2}$

for an N-node AVL tree of height h

- Idea: to prove by showing $N \ge N(h) \ge 2^{h/2}$, where $N(h) = \min \# \text{ of nodes of an}$ *h*-height AVL tree.
- Induction
 - N(1) = 1, N(2) = 2
- N(h) = N(h-1) + N(h-2) + 1 $N(h) \ge 2 \cdot N(h-2)$
- Solution
 - $N(h) \ge 2N(h-2) \ge 2(2N(h-4))$ $\geq 2^i N(h-2i) \approx 2^{h/2}$
 - Or $h = O(\log_2 N)$

TreeNode<T>* AVLTree Left/Right Rotation

| template < class T >
| TreeNode<T>* AVLTree<T>::leftRotate(TreeNode<T> *node) |
| TreeNode<T>* AVLTree<T>::leftRotate(TreeNode<T> *node) |
| TreeNode<T>* node r = node - right;
| TreeNode<T>* node rl = node r->left;
| node r->left = node;
| node-r-light = node rl;
| node r->UpdateHeight();
| return node r;
| template < class T >
| TreeNode<T>* AVLTree<T>::rightRotate(TreeNode<T> *node) |
| treeNode<T>* AVLTree<T>::rightRotate(TreeNode<T) *node) |
| TreeNode<T>* node l = node - Neft;
| TreeNode<T>* node l = node - Neft;
| node - Neft = node lr;
|

B-tree: Definition

A B-tree of order m is a height-balanced m-way search tree, where each node may have up to m children, and in which:

- 1. Each internal node contains no more than m- 1 keys
- 2. All leaves are on the same level
- 3. All nodes except the root have $\lceil m/2 \rceil$ to m children
- 4. The root is either a leaf node, or it has 2 to *m* children
- 5. m usually is odd.

pointer 2018/11/10 © Ren-Song Tsay, NTHU, Taiwan

2-3 Trees

- A B-Tree of order 3 is called a 2-3 Tree.
 - 2 to 3 pointers
- In a 2-3 tree, each internal node has either 2 or 3 children.
- Most practical applications adopt larger order (e.g., m=128) B-Trees.

Deletion from a 2-3 Tree
After 20 deleted
2018/11/10 © Ren-Song Tsay, NTHU, Taiwan 6

B-Tree Exercise

Insert the following keys to a 5-way B-tree: 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4, 31, 35, 56

Then delete all nodes subsequently in the reverse order of the insertion.

2018/11/10 © Ren-Song Tsay, NTHU, Taiwan